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Alvarez-Buylla et al. asserted undetectable neurogenesis in 
the adult human dentate gyrus (DG), as they did not visu-
alize well-validated adult hippocampal neurogenesis 
(AHN) markers [such as nestin or doublecortin (DCX)] in 
this structure (1). The authors now acknowledge the pres-
ence of cells positive for these and other markers (2) while 
disbelieving that they are related to AHN in our study (3). 
No published data support their suggestion that the hu-
man DCX+ dentate granule cells (DGCs) described in nu-
merous studies, including ours (3–5), have a developmental 
origin. Conversely, the adult-born nature of DCX+ cells is 
consistent with bromodeoxyuridine and 14C birthdating 
approaches (6, 7), which support the continuous addition 
of new neurons to the human DG. Our study (3) reveals the 
presence of DCX+ immature DGCs at distinct differentia-
tion stages in this structure. DCX+ cells colabeled with 
calretinin, neuronal nuclei, or calbindin (which identify 
sequential stages of AHN) show morphologies and posi-
tioning [figure 1, F to J, and figure S2H of (3)] matching 
those observed in rodents. Contrary to Alvarez-Buylla et 
al.’s view that DCX+ cells in (3) are large, the size of these 
cells varies during their maturation [figures 1J and S2H of 
(3)] but remains significantly smaller than that of mature 
DGCs [figure 2m of (5) and figure 6K of (4)]. Alvarez-
Buylla et al. allege that DCX+ DGCs in (3) are exclusively 
located in the granule cell layer (GCL), despite our quanti-
tative data revealing the abundant presence of these cells 
in the subgranular zone (SGZ). In fact, DCX+ cells are dis-

tributed in a maturation gradient between the GCL and 
SGZ, the most immature (those that coexpress calretinin or 
polysialylated neural cell adhesion molecule) being located 
in the SGZ [figures 1G and S2B of (3)]. These data support 
the notion that human DCX+ DGCs undergo a dynamic 
maturation process characteristic of AHN in numerous 
mammalian species. 

Alvarez-Buylla et al. postulate that the putative pres-
ence of DCX+ cells in non-neurogenic regions challenges 
the authenticity of human AHN. However, a recent study 
(8) revealed that the DCX signal observed in the macaque 
cortex is artifactual, thereby calling for caution when in-
terpreting DCX staining in non-neurogenic regions of the 
primate brain. Conversely, control experiments showed 
that DCX protein is present in neurogenic niches of ma-
caques (8) and humans [see the use of monoclonal anti-
bodies and preadsorption with blocking peptides in 
extended data figure 4 of (5)]. Their suggestion that DCX is 
reexpressed by mature DGCs goes against experimental 
evidence (9). The expression of the DGC marker Prox1 by 
~90% DCX+ cells [figure 1E of (3)] and the absence of DCX 
protein in glia, vasculature, and interneurons [figure S5 of 
(3)] also contest Alvarez-Buylla et al.’s view that DCX may 
be detected in non-DGCs. 

Nestin+ cells are present in the adult human DG (10). 
In (3), we observed a population of nestin+ cells that ex-
press a panel of radial glia–like cell markers [such as SRY-
box transcription factor 2 (Sox2) and vimentin] while lack-
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ing S100 calcium-binding protein-B (S100β) expression. 
Although these criteria are widely used to phenotypically 
identify neural stem cells (NSCs) by immunohistochemis-
try (11), Alvarez-Buylla et al. suggest that the nestin+ 
S100β– cells identified in (3) are astrocytes. The morpholo-
gy of nestin+ S100β– NSCs differs from that of nestin+ 
S100β+ astrocytes [figures 1 and S3 of (3)]. Moreover, it is 
consistent with that of hippocampal NSCs in aged rodents 
(12). Nestin+ S100β– cells show distally branched [figure 
S3E of (3)] long apical processes that transverse the GCL 
[figure S3, A, C, D, and F, of (3)], and ~97% of their somas 
are located in the SGZ [figure S3G of (3)]—features also 
evident with vimentin staining (Fig. 1). Furthermore, the 
number of nestin+ cells does not exhibit variations correla-
tive to those of S100β+ astrocytes either in control or dis-
eased individuals [figure S16E of (3)]. These observations 
refute Alvarez-Buylla et al.’s interpretation that the nestin+ 
S100β– NSCs identified in (3) are astrocytes. 

Alvarez-Buylla et al. challenge the nature of the prolif-
erative cells observed in (3), suggesting that ~10,000 phos-
pho-histone 3+ mitotic cells per mm3 do not constitute an 
actual proliferative niche. These authors overlooked the 
fact that, in (3), we also used ELAV-like proteins HuC/HuD 
[which are transiently expressed by intermediate progeni-
tors and proliferative neuroblasts immediately after cell 
division (13)] to phenotypically characterize human DG 
proliferative cells. About 90% of these cells expressed DCX 
and ~85% were located in the SGZ [figure S4 of (3)]. These 
data contest their suggestion that HuC/HuD labels mature 
neurons and support the notion that most proliferative 
cells in the human DG correspond to transit-amplifying 
progenitors and neuroblasts located in the SGZ. With re-
spect to calretinin+ cells, only those double-labeled with 
DCX were studied in (3) and (5), thereby excluding puta-
tive calretinin+ interneurons. 

Several interpretations by Alvarez-Buylla et al. with re-
spect to neurodegenerative diseases are inaccurate. Re-
garding frontotemporal dementia (FTD), they mention two 
studies that found DGC loss in patients with FTD-Tau, 
which is characterized by DG nuclear inclusions and atro-
phy. However, these features are far from constant in other 
FTD variants (14). Given the absence of patients with FTD-
Tau in (3), this comment is irrelevant to our study. These 
authors mention a study suggesting absence of major DG 
alterations in patients with dementia with Lewy bodies. 
However, our study included patients not only with that 
condition but also with Parkinson’s disease. These α-
synucleinopathies have different clinical, neuropathologi-
cal, and molecular features, thereby triggering distinct 
hippocampal signatures (3). Alvarez-Buylla et al. suggest 
that the fluctuations in the number of RGL and prolifera-
tive cells observed in neurodegenerative diseases point to 

these cells not being related to AHN. The altered neuronal 
differentiation and exacerbated apoptosis [figure S8 of (3)] 
likely account for unchanged numbers of mature neurons 
even in the presence of increased proliferative cells and/or 
NSCs in diseased individuals. Moreover, independent regu-
lation of individual AHN stages has been extensively 
demonstrated (15). 

We appreciate the interest that our new data have 
raised in our colleagues and are confident that our study 
will contribute to a greater understanding of how AHN 
persists throughout human life. 
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Fig. 1. Vimentin and S100β staining in the human DG. ML, molecular layer; GCL, granule cell layer; SGZ, subgranular 
zone; DAPI, 4′,6-diamidino-2-phenylindole. Scale bar, 10 μm. 
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