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A B S T R A C T

The mammalian hippocampus generates new dentate granule cells (DGCs) throughout life. This 
process, named adult hippocampal neurogenesis (AHN), participates in hippocampal functions 
such as memory and mood regulation. Moreover, AHN is impaired in mouse models and patients 
with neurodegenerative and psychiatric disorders. Additionally, physiological aging targets AHN 
and the integrity of the hippocampal neurogenic niche. This perspective review aims to discuss 
the regulation of human AHN in patients with neurodegenerative and psychistric conditions. 
Moreover, we will address key adaptations of human AHN and the neurogenic niche in response 
to physiological aging.

Introduction

The mammalian hippocampus has a remarkable capacity to generate new neurons, namely dentate granule cells (DGCs), 
throughout life [4]. This process, known as adult hippocampal neurogenesis (AHN), supports enhanced hippocampal neural plasticity 
during aging. Moreover, it is involved in key hippocampal functions, such as learning and memory, and mood regulation (reviewed in 
[41]. In particular, AHN participates in pattern separation [107], spatial memory [75], forgetting of established memories [1], as well 
as depressive- and anxiety-like behaviors [68]. To support the continuous generation of new neurons, the inner border of the dentate 
gyrus (DG), which is in tight contact with the hilus, is composed of a specialized matrix, named the neurogenic niche. This niche is 
enriched in a profuse vascular network, astrocytes, microglia, and immature neurons [132]. This unique environment orchestrates 
complex crosstalk to regulate AHN in mammals [114,121,127].

Within this matrix, a resident population of neural stem cells (NSCs) with radial-glia-like properties [112]occasionally divides and 
gives rise to transit-amplifying progenitors and neuroblasts [76]. These cells are characterized by high proliferative capacity and 
commitment to the neuronal lineage. After exiting the cell cycle, neuroblasts differentiate into immature neurons, which express the 
microtubule-associated protein Doublecortin (DCX) and the extracellular matrix Polysialylated-neural cell adhesion molecule (PSA- 
NCAM), among other markers (Fig. 1) [27,103]. Immature neurons go through distinct maturation stages before becoming (almost) 
[37] indistinguishable from their developmentally generated fully mature counterparts [76]. During the aforementioned 
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differentiation stages, newborn DGCs become functionally integrated into the hippocampal trisynaptic circuits [146]. This integration 
process involves the establishment of afferent synaptic contacts from both excitatory and inhibitory sources of innervation 
[59,96,146]. Moreover, newborn DGCs send their axonal projections toward their synaptic targets in the CA2 and CA3 hippocampal 
subfields [82,146]. In parallel, immature neurons migrate from the subgranular zone (SGZ) towards the granule cell layer (GCL) [76] 
and acquire a progressively more complex characteristic Y-shape morphology, which might be related to their physiological functions 
(reviewed in [83].

Despite the consistent occurrence of AHN across mammalian phylogeny, this process presents species-specific particularities 
(revised in [126]. In this regard, the occurrence of AHN in humans was first shown by Eriksson et al. in 1998 [48]. Subsequently, 
although a small number of studies did not find evidence of human AHN [34,52,115], most overwhelmingly support the occurrence of 
this phenomenon during physiological and pathological aging [21,24,51,77,97,116,127,128,129,147]. In this context, although most 
of the available literature is based on immunohistochemistry (IHC), recent single-cell RNA-seq (sc-RNAseq) studies are starting to 
unveil the complex molecular landscape underlying human AHN and its regulation [129,147]. In this respect, both physiological aging 
and pathological conditions have a dramatic impact on AHN and the homeostasis of the hippocampal neurogenic niche (Table 1), as 
further discussed in the forthcoming sections of this review. We will focus on the key aspects that characterize human AHN, as well as 
the current understanding of its regulation during physiological and pathological aging. In particular, we will summarize available 
evidence of AHN impairments in aged individuals, as well as in patients with distinct neurodegenerative and psychiatric disorders. We 
will also address some limitations inherent to human studies and outline future directions and current challenges in the field of human 
AHN research.

Human adult hippocampal neurogenesis during physiological aging

As mentioned above, AHN was first observed in humans in a study conducted by Eriksson et al., in which they detected Bromo
deoxyuridine (BrdU)+ / Neuronal Nuclei (NeuN)+ cells in the DG of patients previously administered BrdU, a thymidine analog used 
for labeling proliferating cells [48]. A subsequent study in 2014 corroborated these findings, identifying 5-iodo-2′-deoxyuridine (IdU)+

neurons in the hippocampal DG of cancer patients treated with this compound [49]. A large and growing body of literature has 
explored the occurrence of AHN in humans using other techniques. For instance, Manganas et al. employed an in vivo method to find 
metabolites specific to NSCs and progenitor cells, identifying a lipid signal at 1.28 ppm as a biomarker detected by functional magnetic 
spectroscopy in the human brain [90]. Furthermore, using a 14C birth-dating method [16] and mathematical models, Spalding et al. 
estimated that roughly 700 new neurons are generated daily in the human DG [116]. However, most studies have relied on immu
nohistochemical markers to study AHN. NSCs and progenitor cells have been consistently observed in the hippocampus, as evidenced 
by the presence of Nestin+ and SRY-box transcription factor 2 (Sox2)+ cells [21,22,24,28,77,79,127]. Moreover, a population of radial 
glial-like (RGL) cells that were Nestin+, Sox2+, Vimentin+ and glial fibrillary acidic protein (GFAP)+ while lacking S100 calcium- 
binding protein B (S100β) expression was identified in the human DG [127]. Additionally, cell proliferation markers, including
Phospho-Histone H3 (PH3) [86,127], Ki67 [18,21,22,24,77,79,92], and minichromosome maintenance complex component 2 
(MCM2) [34,77,86] were also identified, suggesting active cell division. Moreover, proliferative neuroblast markers, such as human 
neuronal proteins C and D (HuC/HuD), further corroborated the commitment of proliferative cells to the neuronal lineage [127]. 

Fig. 1. Schematic diagram showing the main stages encompassed by human adult hippocampal neurogenesis. RGL: Radial glia-like cell. IPC: In
termediate progenitor cell. DGC: Dentate granule cell. Sox2: SRY-box transcription factor 2. GFAP: glial fibrillary acidic protein. BLBP: Brain lipid- 
binding protein. Pax6: Paired box 6. Ascl1: Achaete-Scute family BHLH transcription factor 1. PH3: Phospho-Histone H3. HuC/HuD: Human 
neuronal proteins C and D. MCM2: Minichromosome maintenance complex component 2. Tbr: T-box brain protein. Ngn2: Neurogenin 2. PCNA: 
Proliferating cell nuclear antigen. DCX: Doublecortin. PSA-NCAM: Polysialylated-neural cell adhesion molecule. CR: Calretinin. TUC4: Turned On 
After Division/Ulip/ CRMP-4. CB: Calbindin. NeuN: Neuronal Nuclei. MAP2: Microtubule-associated protein 2. 3R-Tau: Three-repeated Tau. Prox1: 
Prospero Homeobox 1.
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Table 1 
Impact of physiological aging and pathological conditions on adult hippocampal neurogenesis and the neurogenic niche. NSCs: Neural stem cells. 
DGCs: Dentate granule cells. AD: Alzheimer’s disease. PD: Parkinson’s disease. LBD: Dementia with Lewy bodies. HD: Huntington’s disease. ALS: 
Amyotrophic lateral sclerosis. FTD: Frontotemporal dementia. CJD: Creutzfeldt Jakob disease. MD: Major depression. SCH: Schizophrenia. BD: Bi
polar disorder. SSRIs: Selective serotonin reuptake inhibitors. TCAs: Tricyclic antidepressants. Sox2: SRY-box transcription factor 2. GFAP: glial 
fibrillary acidic protein. S100β: S100 calcium-binding protein B. PCNA: Proliferating cell nuclear antigen. HuC/HuD: Human neuronal proteins C and 
D. MCM2: Minichromosome maintenance complex component 2. PH3: Phospho-Histone H3. NPCs: Neural progenitor cells. Top2a: DNA Topo
isomerase II Alpha. Egfr: Epidermal growth factor receptor. PSA-NCAM: Polysialylated-neural cell adhesion molecule. DCX: Doublecortin. CR: 
Calretinin. Prox1: Prospero Homeobox 1. MAP2: Microtubule-associated protein 2. CB: Calbindin. NeuN: Neuronal Nuclei. DG: Dentate gyrus. PAS: 
Periodic acid–Schiff.

Physiological aging
Neurodegenerative diseases Neuropsychyatric diseases

Adult 
hippocampal 
neurogenesis

NSCs = Nestin+ cells [21,127], 
= Sox2+ cells [79,127], 
↓ Sox2+ cells [21], 
= GFAPδ+ cells [92] 

AD: ↓ Sox2 reactivity [39], 
↑ Nestin reactivity and ↓ 
Musashi-1 reactivity [101]; =
Sox2+ cells [55], 
↓ Nestin+ cells and =
Nestin+GFAP- cells [31]  

PD: ↓ Nestin+ cells [69], 
↑ Nestin+S100β- cells and ↑ 
Sox2+ cells [127]  

LBD: ↓ Musashi-1+ cells [72], 
↓ Sox2+ cells [139], 
= Nestin+S100β- cells and =
Sox2+ cells [127]  

HD: ↑ Nestin+S100β- cells [127]  

ALS: ↓ GFAPδ+ cells [53,56], 
↑ Nestin+S100β- cells and ↑ 
Sox2+ cells [127]  

FTD-ALS: ↓ GFAPδ+ cells 
[53,56]  

FTD: ¼ Nestin+S100β- cells 
[127]  

CJD: ¼ Sox2+ cells [55]

MD: = Nestin+ cells [20], 
↑ Nestin+ cells in patients treated with 
SSRIs and TCAs [22,24]   

Addiction: = Nestin+ cells and ↓ 
Musashi-1+ cells in heroin addicts [11], 
↓ Sox2+ cells in alcoholics [79] 

Proliferation = Ki67+ cells [21], 
↓ Ki67+ cells [42,79,92], 
= PH3+ cells [127], 
= PCNA+ cells [94],  
↓ NPCs (marked by MKi67, 
Top2a and Egfr) [85]

AD: = Ki67+ cells [19], 
↑ Ki67+ cells [55], 
↓ PCNA+ cells [128]  

PD: ↑ PH3+ cells [127]  

LBD: ↑ PCNA+ cells [72], 
= PH3+ cells [127]  

HD: ¼ PCNA+ cells [84], 
= PH3+ cells [127]  

ALS: ↓ PCNA+ cells and ↓ Ki67+

cells [53,56], 
¼ PH3þ [127]  

FTD-ALS: ↓ PCNA+ cells and ↓ 
Ki67+ cells [53,56]  

CJD: ↑ Ki67+ cells [55]  

MD: = Ki67+ cells [20,24,106], 
↑ Ki67+ cells in patients treated with 
TCAs [24], 
↓ Mcm2+ cells and = PH3+ cells [86], 
= PCNA+ cells [134]  

SCH: ↓ Ki67+ cells [2,106], 
= PCNA+ cells [134]  

BD: = Ki67+ cells [106], 
= PCNA+ cells [134]  

Addiction: = Ki67+ cells in heroin 
addicts [11], 
↓ Ki67+ cells in alcoholics [79]

Neuroblasts = HuC/HuD+ cells [127] AD: ↓ HuC/HuD+ cells [46]  

PD: ↑ HuC/HuD+ cells [127]  

LBD: = HuC/HuD+ cells [127]  

HD: = HuC/HuD+ cells [127] 

​

(continued on next page)
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Table 1 (continued )

Physiological aging 
Neurodegenerative diseases Neuropsychyatric diseases

ALS: = HuC/HuD+ cells [127]  

FTD: ↓ HuC/HuD+ cells [127]  

Immature neurons 
(early 
differentiation)

↓ PSA-NCAM+ cells [21], 
↓ DCX+ cells 
[34,77,92,97,127], 
↓ STMN1, STMN2, DCX [135]

AD: ↑ DCX expression [71], 
↑ PSA-NCAM reactivity, = DCX 
reactivity and β-III-tub reactivity 
[101], 
↑ CR+ cells [55], 
↓ DCX+ cells [31,39]; Lazarov O 
et al., 2024; [97,128,147], 
↓ DCX+PSA-NCAM+ cells and ↓ 
DCX+β-III-tub+ cells [97], 
↓ DCX+CR- cells, ↓ DCX+CR+

cells and ↓ CR+Prox1+ cells [31]  

PD: ↓ β-III-tub+ cells [69], 
↑ DCX+ cells [127], 
↓ DCX+ cells [102]  

LBD: = DCX+ cells [72], 
= DCX+ cells [127]  

HD: ↑ PSA-NCAM+ cells and ↑ 
DCX+ cells [127]  

ALS: ↓ PSA-NCAM+ cells 
[53,56], 
↑ DCX+ cells [127]  

FTD-ALS: ↓ PSA-NCAM+ cells 
[53,56]  

FTD: ↓ DCX+CR+ cells and =
DCX+ cells [127]  

CJD: ↑ CR+ cells [55] 

MD: = CR+ cells [145], 
= CR expression [134], 
↑ DCX+ cells in patients without 
psychosis compared to those with 
psychosis [47]  

SCH: = CR+ cells [145], 
↑ CR expression [134]  

BD: = CR+ cells [145], 
↑ CR expression [134]  

Addiction: ↓ DCX+ cells in alcoholics 
[79]

Immature neurons 
(late differentiation)

​ AD: ↓ Map2a and b isoforms 
[80], 
↓ DCX+CB+ cells, ↓ DCX+NeuN+

cells, ↓ DCX+Prox1+ cells [97]  

PD: ↓ DCX+NeuN+ cells [127], 
¼ DCX+NeuN + cells [102]  

LBD: DCX+NeuN+ cells [127]  

HD: ↓ DCX+NeuN+ cells [127]  

FTD: ↓ DCX+NeuN+ cells [127]

​

Total DGCs ¼DAPI with neuronal nuclear 
morphology [127]

PD: ¼ DAPI with neuronal 
nuclear morphology [127], 
¼ NeuN+ cells [102]  

LBD: ¼ DAPI with neuronal 
nuclear morphology [127]  

HD: ↑ DAPI with neuronal 
nuclear morphology [127]  

ALS: ¼ DAPI with neuronal 
nuclear morphology [127]  

FTD: ¼ DAPI with neuronal 

MD: ↑ dentate granule cells identified by 
Nissl staining [117], 
= CB expression [134], 
= dentate granule cells identified by Nissl 
staining [35], 
↓ NeuN+ cells in anterior and mid DG 
[23],  

SCH: = neurons identified by Nissl 
staining in the hippocampus [66], 
↓ CB mRNA expression in mid DG [3], 
= CB expression [134], 
= dentate granule cells identified by Nissl 
staining in anterior + posterior DG [50]  

(continued on next page)
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However, a study conducted by Cipriani et al. did not find evidence of the proliferative activity of Nestin+ cells using Ki67 labeling 
[34]. Additionally, recent studies using sc-RNAseq have identified cells that express neural progenitor cell (NPC) markers [32] and 
neuroblast-like populations [141], thereby further supporting the persistence of neurogenesis in the adult hippocampus. Proliferation 
markers shed light on the early stages of neurogenesis. To track the maturation of newly generated neurons, numerous studies used 
DCX and PSA-NCAM, providing compelling evidence of immature neurons and strongly supporting the notion of ongoing AHN in 
humans. For instance, an early study by Knoth et al. detected the presence of DCX+ neurons in humans from 1 day to 100 years old 
[77]. Moreover, Liu et al. detected DCX+ cells using immunofluorescence and Western blot methods [81]. In contrast, several authors 
reported undetectable expression of DCX in human adults [42,111,115]. However, numerous subsequent studies consistently 
demonstrated the presence of DCX+ and PSAN-CAM+ immature neurons in the adult human DG [21,79,92,97,124,127,128]. Addi
tionally, DCX co-localizes with neuronal markers of distinct maturation stages, including Calretinin (CR) (early) and Calbindin (CB) 
(advanced) [97,127]. Therefore, there is a considerable body of evidence confirming the presence of maturing neurons in the human 

Table 1 (continued )

Physiological aging 
Neurodegenerative diseases Neuropsychyatric diseases

nuclear morphology [127] BD: = CB expression [134]  

Addiction: ↓ dentate granule cells 
identified by cresyl-violet, PAS, or 
hematoxylin-eosin staining in alcoholics 
[14], 
↓ NeuN+ cells in alcoholics [43]   

Neurogenic niche Microglia ↑ %CD83+ Iba1+ cells among 
Iba1+ cells [119], 
= Iba1+ cells [127], 
↓ phagocytic pouches per 
Iba1+ microglia [127], 
= glial cells identified by Nissl 
staining [21]

AD: ↑ Iba1+ cells at Braak-Tau 
stages III-IV [46], 
distrophyc morphology in Iba1+

cells [108], 
= Iba1+ cells (Lazarov O et al., 
2024)  

PD: ↓ phagocytic pouches [127]  

LBD: ↓ phagocytic index [127]  

HD: ↓ phagocytic index [127]  

ALS: ↓ phagocytic pouches [127]  

FTD: = phagocytic index [127]

MD: ↑ glial cells identified by Nissl 
staining [117], 
¼ glial cells identified by Nissl staining 
[35]  

Addiction: microgliosis [136]

Astrocytes = S100β+ cells [127], 
↑ GFAP expression and =
S100β+ cells (↑ astrocyte 
activation) [92], 
↑ % GFAP+ S100β + cells 
among S100β + cells [119], 
= glial cells identified by Nissl 
staining [21]

AD: ↑ GFAP expression [19], 
↑ GFAP+ cells at Braak-Tau 
stages V-VI [46], 
↑ Nestin+GFAP+ [31], 
= GFAP+ cells (Lazarov O et al., 
2024)  

PD: ↑ S100β+ cells [127]  

LBD: = S100β+ cells [127]  

HD: ↑ S100β+ cells [127]  

ALS: ↑ S100β+ cells [127]  

FTD: ↑ S100β+ cells [127]

MD: ↑ glial cells identified by Nissl 
staining [117], 
¼ glial cells identified by Nissl staining 
[35]  

Addiction: astrocytosis [136]

Vasculature = capillary density [127], 
= DG capillary thickness 
[127], 
↓ Nestin+ capillary density 
[21]; 
↓ Nestin+ capillary area 
density [21], 
↓ Nestin+ capillary length 
density [21] 

AD: ↑ Ki67+ cells in VWF+

vessels [19]  

PD: = capillary thickness [127]  

LBD: ↑ capillary thickness [127]  

HD: ↑ capillary thickness [127]  

ALS: = capillary thickness [127]  

FTD: ↑ capillary thickness [127]

MD: ↑ capillary area in patients treated 
with SSRIs [22]
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hippocampus, with contrasting findings largely attributable to variations in experimental protocols, as previously reviewed [126]. 
Moreover, recent sc-RNAseq data have been used to reconstruct the full cellular trajectory of AHN, thereby highlighting the hetero
geneity of progenitors and immature DGCs [8,60,85,135,147]. Additionally, new neurogenic markers enriched in humans have been 
validated, including ETNPPL [135,143], as well as STMN1 and STMN2 [135,147]. Interestingly, some studies found no transcriptomic 
signatures of AHN in the human hippocampus [52]. However, various methodological and computational challenges, such as 
sequencing depth, sample size, and processing, may influence the profiling of AHN using sc-RNAseq technologies [129].

It is now well established that AHN is modulated by distinct factors, including physiological aging. Research shows that the number 
of DCX+ [34,77,92,97,127] and PSA-NCAM+ [21] immature neurons decreases with age. In contrast, the number of cells positive for 
NSC markers [21,79,92,127], Ki67+ proliferative cells [21], proliferating cell nuclear antigen (PCNA)+ [94], PH3+, HuC/HuD+ [127] 
cells, and total DGCs [21,127] remain stable throughout aging. Consequently, it has been proposed that physiological aging selectively 
impacts certain maturation stages [92,127]. However, other authors have reported a decrease in Sox2+ [21], and Ki67+ [42,79,92] 
cells with aging. sc-RNAseq studies have also revealed significant age-related changes in the gene expression profiles of immature 
DGCs [147], a decline in cells expressing NSC markers and immature neurons [135], and a reduction of NPC marker-expressing cells 
[85] during physiological aging.

These age-related alterations in neural progenitor populations and immature neurons highlight the impact of aging on AHN. 
However, AHN does not occur in isolation. The neurogenic niche contributes to the regulation of this neurogenic process and is 
similarly targeted by aging. Astrocytes, a key component of the neurogenic niche, also undergo age-related changes and show regional 
heterogeneity. Boldrini et al. observed a ubiquitous distribution of mature astrocytes across the hilus and hippocampal formation [24], 
while Terreros-Roncal et al., reported an abundant presence of S100β+ astrocytes in the DG [127]. Within the hippocampus, astrocytes 
show distinct subtypes based on location, morphology, and molecular profiles. These subtypes are often layer-specific, with molecular 
and morphological differences that are partially preserved in humans [74], while others contribute to functions such as synaptic 
modulation and injury response [8,119]. Several studies showed that aging stimulates astrocyte activation, while progenitor-like 
astrocytes (Sox2+) decrease with age [92,119], although no correlation between age and Sox2+ astrocytes was found in Terreros- 
Roncal et al. [127]. Similarly, microglia also show diverse subpopulations in the hippocampal neurogenic niche with specific mo
lecular signatures that change over time [119]. Additionally, microglia with phagocytic pouches have polarized, highly ramified 
structures, in contrast to those without pouches. These structural differences are thought to be associated with variations in their 
phagocytic capacity [127]. Other studies reported clusters of homeostatic and pre-active microglia potentially influencing neuro
genesis [8], as well as a specific microglial subtype (PCDH9high) that has a proinflammatory profile and interacts with neurons 
through specific ligand-receptor pathways [32]. Similar to astrocytes, microglia also undergo significant changes with age, shifting 
towards a reduction of their phagocytic capacity [127]. Interestingly, while aging leads to a decrease in microglial populations 
associated with inflammation and autophagy [119], there is also an increase in microglial activation [105,135] and reactive microglial 
proliferation [85]. Regarding oligodendrocytes, there are also multiple subtypes in the hippocampal niche, showing distinct gene 
expression patterns [8,119]. A decline in oligodendrocyte progenitor cells, suggesting reduced oligodendrogenesis, was observed with 
aging [119]. However, this finding contradicts the observation of enhanced oligodendrogenesis [105]. Moreover, previous research 
has established that approximately 7 % of the hippocampal GCL comprises blood vessels and capillaries [127], which are located near 
Nestin+ cells, suggesting a role in supporting NSC growth and maturation [21,22,24]. While Boldrini et al. reported reduced capillary 
density with aging [21], this was not observed by Terreros-Roncal et al. [127]. Beyond the individual changes observed in each cellular 
population of the neurogenic niche, it is important to note that aging also influences the interactions between immature DGCs and 
other cell types located in their neighboring neurogenic niche [147].

Thus, taken together, these findings suggest that physiological aging disrupts AHN by altering both cells belonging to the 
neurogenic lineage and the homeostasis of the neurogenic niche. These age-related changes might contribute to a decline in neuro
genesis, which may ultimately impair hippocampal function and cognitive processes. The precise mechanisms underlying the age- 
related decline in AHN, as well as the specific effects of neurogenic niche alterations on cognition and behavior, remain poorly un
derstood, thereby highlighting the need for additional mechanistic studies to explore the impact of these changes on hippocampal 
function.

AHN in patients with neurodegenerative diseases

Neurodegenerative diseases comprise a spectrum of disorders primarily characterized by the loss of neurons and synapses in the 
central or peripheral nervous system, leading to the impairment of memory, cognition, behavior, and sensory and motor function 
[138]. According to the World Health Organization (WHO), over 50 million people worldwide are affected by these conditions, and 
their incidence is expected to rise exponentially in the coming years due to the increasing number of elderly people, thus posing a 
major global challenge.

AHN and Alzheimer’s disease

Alzheimer’s disease (AD), the most prevalent neurodegenerative disease, is histopathologically characterized by the deposition of 
β-amyloid plaques and neurofibrillary tangles of hyperphosphorylated tau protein in the hippocampal region [25]. The way in which 
AHN is affected in AD has been a subject of debate, probably due to the intrinsic limitations of working with human tissue [126].

For instance, findings regarding the effects of AD on cells expressing NSC markers are inconsistent. While some studies reported 
decreased levels of Sox2 immunoreactivity [39] and a decreased proportion of Nestin+ cells in the SGZ [31], others described either an 
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increase in Nestin immunoreactivity [101] or no significant changes in the number of Sox2+ cells [55]. Similarly, findings on pro
liferative progenitors are contradictory. No changes were initially reported in presenile AD brains [19], whereas subsequent studies 
revealed decreased levels of cells positive for Musashi1 [101], an RNA-binding protein associated with NSC self-renewal, and reduced 
numbers of HuC/HuD+ [46] and PCNA+ [128] cells. In contrast, only one study described increased numbers of Ki67+ cells [55]. The 
alterations reported on immature neurons are more consistent. While early studies suggested that they remain unchanged [101] or are 
increased in AD brains, either by quantifying the expression of DCX by Western blot [71] or by quantifying CR+ immature neurons by 
IHC [55], most of the available literature discloses a drop in the number of DCX+ cells during AD progression both by IHC 
[31,39,97,128] and sc-RNAseq [78,147]. Specifically, using a tightly controlled methodology [51], our group conducted a study on a 
cohort of 13 neurologically healthy control subjects and 45 patients with AD, who were distributed throughout the 6 neuropatho
logical Braak-Tau stages. The results demonstrated that the density of DCX+ immature neurons was sharply reduced from Braak stage I 
onwards [97]. Interestingly, the disease not only reduced the number of immature neurons but also presumably their functionality, as 
revealed by sc-RNAseq analysis [147]. Moreover, a study of microtubule-associated protein 2 (Map2) isoform expression [80] revealed 
a blockade in the maturation of newborn neurons, which was also confirmed by a reduction in the expression of PSA-NCAM, Prospero 
Homeobox 1 (Prox1), β-III-tub, NeuN, and CB in DCX+ immature neurons, starting at Braak-Tau stage III and throughout the subse
quent stages of the disease [31,97]. The molecular pathways underlying the alterations in AHN have been linked to Notch and BMP 
signaling [31], specifically to the BMP6 factor [39].

However, understanding the disruptions in the neurogenic process requires exploration of the broader neurogenic niche. In this 
context, one semi-quantitative study reported increased glial fibrillary acidic protein (GFAP) expression in the SGZ of AD brains [19]. A 
subsequent study described a decrease in the numbers of GFAP+ cells at Braak-Tau stages III-IV, compared to Braak-Tau stages 0-II, 
followed by an increase at Braak-Tau stages V-VI [46]. However, this study lacked a control group without neurofibrillary tangle 
pathology. Regarding microglia, the same study reported an increased number of Iba1+ cells at Braak-Tau stages III-IV compared to the 
other stages [46] and these cells were also observed to have a dystrophic morphology [108]. In contrast, recent sc-RNAseq studies have 
not detected changes in astrocyte or microglia densities [78], but have revealed dysregulation of the expression of genes related to 
synapses, cell adhesion, and signal transduction [93,119]. Concerning blood vessels, increased proliferation of Von Willebrand Factor 
(VWF)+ endothelial cells was reported [19], along with alterations in the interaction between blood vessels and NSCs [34].

Overall, the evidence discussed above indicates that AHN is significantly impaired in patients with AD, not merely as a consequence 
of the disease, but potentially contributing to its pathogenesis. In mice, the axons from the lateral entorhinal cortex (LEC) are the main 
afferent connections to newborn DGCs. A failure in AHN could compromise the structural and functional integrity of the axonal 
terminal, leading to retrograde degeneration of LEC neurons [144]. Such degeneration may underlie not only the hallmark memory 
and cognitive deficits of AD but also mood-related disorders, such as depression and anxiety. Moreover, a study reporting preserved 
neurogenesis in a subset of AD patients who remained cognitively intact [28] underscored the importance of AHN as a potential 
therapeutic target. However, there are still missing pieces in this puzzle that need to be addressed. Further studies are required to 
comprehensively assess the homeostasis of the neurogenic niche during disease progression. Comparative studies including both 
healthy controls and individuals at distinct Braak-Tau stages are essential to clarify how interactions between NSCs, glial cells, in
terneurons, and vascular components evolve during AD progression. Addressing these gaps will be crucial for developing a more 
integrative understanding of neurogenesis in AD.

AHN and α-synucleinopathies

α-synucleinopathies are a group of neurodegenerative disorders characterized by abnormal deposits of alpha-synuclein (α-syn) in 
neurons and glia, ultimately causing their death. The most common α-synucleinopathies are Parkinson’s Disease (PD) and Lewy body 
dementia (LBD). In PD, there is a pronounced loss of dopaminergic neurons in the substantia nigra, whereas in LBD, α-syn aggregates 
accumulate in several cortical regions. Beyond motor dysfunction, both pathologies are characterized by cognitive impairment, visual 
hallucinations, and mood-related disorders [7,104].

Regarding the alteration of AHN in PD, several studies have reported contradicting results. While a decrease in the numbers of 
Nestin+ cells was initially described [69], a later study found increased densities of Nestin+ S100β- cells and HuC/HuD+ proliferative 
cells [127]. Similarly, immature neurons were initially described to be reduced, as evidenced by decreased numbers of β-III-tub+ cells 
[69] and DCX+ cells [102]. In contrast, we revealed an increased density of DCX+ cells [127]. Finally, while one study reported 
maintenance of the number of neurons in early (NeuN+ DCX+) and late (NeuN+) maturation stages [102], our data unveiled a reduced 
expression of NeuN in DCX+ cells [127]. Beyond these cellular discrepancies, the neurogenic niche is further compromised in PD, 
including altered microglial phagocytic capacity, marked astrogliosis, and thickened capillaries compared to controls [127].

Regarding LBD, some reports indicate a reduction in the number of Musashi1+ [72] and Sox2+ [139] cells, whereas our group 
observed an increased density of Nestin+ S100β- cells [127]. Additionally, while proliferative PCNA+ cells were described to be 
increased [72], our research did not reveal significant changes [127]. Notably, the number of immature neurons and neurons in later 
maturation stages appears to be unaffected by the disease [72,127]. Finally, the neurogenic niche is affected in patients with LBD, who 
show impaired microglial phagocytosis and increased capillary thickness [127].

Although the hippocampus is not the principal region affected in α-synucleinopathies, both PD and LBD show specific alterations in 
AHN. These neurogenic changes may contribute significantly to the cognitive deficits and mood disturbances experienced by patients, 
suggesting that targeting AHN could pave the way for innovative therapeutic strategies.
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AHN in other neurodegenerative diseases

Huntington’s disease (HD) results from an expanded CAG trinucleotide repeat in the gene encoding the protein huntingtin, which 
leads to its malfunctioning, fragmentation, and subsequent neuronal death. Consequently, patients develop motor impairments, 
chorea, and cognitive deficits [10]. Additionally, deficits in spatial memory and perception have been linked to hippocampal alter
ations [63], suggesting that the neurogenic process is potentially impaired. In this regard, a study on AHN in HD described that the 
number of PCNA+ proliferative cells does not change [84], while Nestin+ S100β- NSCs and DCX+ immature neuron densities were both 
increased [127]. Notably, DCX+ cells show morphological abnormalities, early maturation impairments, and reduced NeuN expression 
[127]. Furthermore, the niche homeostasis is altered in HD, as evidenced by the presence of astrogliosis, altered microglial phago
cytosis, and thickened capillaries [127].

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder primarily affecting motor neurons. It is most commonly 
characterized by Transactive response DNA binding protein of 43 kDa (TDP-43) inclusions, although certain types also show super
oxide dismutase type 1 (SOD1) aggregates. Beyond the hallmark motor dysfunction, nearly half of ALS patients experience cognitive 
and behavioral impairments, and 13 % of them develop frontotemporal dementia (FTD) [62]. Interestingly, hippocampal pathology 
has been observed in ALS patients [33], underscoring the importance of exploring AHN in this disease. In this context, some studies 
reported a reduction in the number of GFAPδ+ NSCs [53,56], whereas our group found increased densities of Nestin+ S100β- NSCs 
[127]. Similarly, while Galán et al. and Gómez-Pinedo et al. documented decreased numbers of PCNA+ and Ki67+ proliferative cells, 
our findings revealed preserved densities of HuC/HuD+ and PH3+ proliferative cells [127]. Moreover, although reduced numbers of 
PSA-NCAM+ immature neurons have been observed in ALS [53,56], our data indicate increased densities of DCX+ immature neurons, 
albeit with altered morphology [127]. Finally, the neurogenic niche in ALS appears to be compromised, showing astrogliosis, 
diminished microglial phagocytic pouches, and thickened capillaries [127].

FTD is marked by the accumulation of protein aggregates, including fused in sarcoma (FUS) TDP-43 and Tau, in the temporal and 
frontal cortices, leading to impairments in executive functions, including behavioral regulation and language [6]. In some cases, 
hippocampal degeneration is also evident [123]. Therefore, the study of AHN is relevant in this pathology. Notably, the aforemen
tioned studies by Galan et al. and Gomez-Pinedo et al. in patients with both ALS and FTD reported an even greater pronounced 
reduction in GFAPδ+ NSCs, PCNA+ and Ki67+ proliferative cells, and PSA-NCAM+ immature neurons [53,56]. In contrast, our findings 
revealed no significant change in the density of Nestin+ S100β- NSCs, a decrease in the density of proliferative HuC/HuD+ cells, and 
stable densities of DCX+ immature neurons [127]. Moreover, the neurogenic niche in FTD is disrupted, as evidenced by astrogliosis, 
thickened capillaries, and a tendency toward a reduced microglial phagocytic index [127].

Creutzfeldt Jakob disease (CJD) is a neurodegenerative disorder characterized by the accumulation of misfolded Prion Protein 
(PrP^Sc) in the cortex, basal ganglia, and cerebellum, ultimately leading to cognitive dysfunction, motor disorder, and behavioral 
abnormalities [99]. Notably, patients with CJD show an increase in the number of Ki67+ proliferative cells, an unaltered number of 
Sox2+ cells, and an increased number of CR+ immature neurons [55]. However, the putative alteration of the neurogenic niche has not 
been addressed to date.

In conclusion, although the primary pathological features of HD, ALS, FTD, and CJD center on distinct molecular abnormalities and 
regional neurodegeneration, the evidence discussed suggests that disruptions in AHN and neurogenic niche homeostasis may represent 
a shared underlying mechanism contributing to the cognitive and behavioral deficits observed in these diseases. These findings not 
only deepen our understanding of the complex interplay between neurodegeneration and hippocampal plasticity but also point to AHN 
as a promising target for developing novel therapeutic strategies.

AHN in patients with neuropsychiatric conditions

According to the WHO, 970 million people worldwide, or 1 in every 8 people, live with a mental health condition. These conditions 
are characterized by significant disruptions in cognition, emotional regulation, or behavior, often leading to distress or impaired 
capacity to undertake routine daily tasks. As previously discussed, aging is a key factor negatively modulating AHN. Moreover, age- 
related reductions in neuroplasticity diminish the brain’s resilience to stress, thereby increasing susceptibility to late-onset mood and 
anxiety disorders [73]. Although many neuropsychiatric conditions originate during early development, aging appears to exacerbate 
pre-existing vulnerabilities by further impairing neural plasticity and AHN. This positions AHN at a critical intersection between 
psychiatric pathophysiology and age-related cognitive decline. For example, in late-life, major depression (MD) is not only more 
prevalent but also strongly associated with hippocampal atrophy and cognitive decline [125], suggesting that aging and depression 
may converge on shared neurodegenerative pathways. Likewise, schizophrenia—despite its early onset—is characterized by pro
gressive hippocampal volume loss that may reflect ongoing impairments in neurogenesis, contributing to the gradual worsening of 
cognitive and emotional dysfunction over the lifespan [148].

AHN and major depression

MD is a psychiatric disorder characterized by persistent low mood, low self-esteem, and restlessness [89]. Patients show not only 
affective but also cognitive symptoms, including alterations in executive functions, memory, learning, and concentration [64].

The detection of reduced hippocampal volume in patients with a history of depressive episodes was the first sign of a correlation 
between MD and hippocampal structural abnormalities [113]—a finding consistently reported in subsequent studies [30,36]. 
Furthermore, reduced hippocampal volume has been associated with lower rates of disease remission [38]. However, although 
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structural changes may be indicators of altered AHN and/or cell death, the specific changes in cellular populations contributing to 
these observations remain unclear. Moreover, stress has been reported to diminish the rate of AHN in mammals [29,57,58]. Notably, 
distinct antidepressants increase the rate of neurogenesis in rodents [40,45,87,88]. Furthermore, AHN is essential for the behavioral 
responses to antidepressants in mice [109]. In the context of these findings, the so-called adult neurogenesis hypothesis of depression 
proposed that abnormalities in the generation of new neurons have a causal relation with depressive behaviors [44,70].

Several studies have been performed in recent decades to unravel whether AHN is impaired in MD. An immunohistochemical study 
of post-mortem human hippocampal tissue showed no changes in Ki67+ proliferating cells in the adult DG in patients with MD 
compared to controls [106]. Conversely, subsequent work showed a 50 % decrease in the number of Ki67+ cells, though this was not 
statistically significant [24], as well as a decrease in MCM2+ cells, and no change in PH3+ proliferative cells [86] in MD patients. To 
assess alterations in the population of immature neurons, the expression of CR was quantified by IHC in the DG [134], which showed 
no changes in patients with MD. Another study reported an increased density of DCX+ cells in depressed patients without psychosis 
compared to those with psychosis [47]. Moreover, untreated MD patients showed fewer NeuN+ neurons in the anterior and mid-DG, 
which was coincident with a decreased GCL volume compared to controls [20,23]. Other work reported that total hippocampal volume 
and DGC density negatively correlates with disease duration [35]. Furthermore, glial cell density was found to be increased in MD 
patients [117].

Numerous studies have focused on whether antidepressant treatment affects AHN. In this regard, patients treated with either 
tricyclic antidepressants (TCAs) or selective serotonin reuptake inhibitors (SSRIs) showed an increased number of Nestin+ cells 
[22,24]. Furthermore, patients receiving TCAs showed more Ki67+ proliferative cells [24], whereas those treated with SSRIs presented 
an increased number of DGCs [23] compared to untreated patients. Notably, the alterations of the DG and GCL volume observed in 
untreated patients were counteracted in those treated with SSRIs [23], who also showed a larger area occupied by capillaries [22]. 
Moreover, neuron-derived extracellular vesicles from treatment-resistant patients were recently reported to contain lower levels of 
DCX, whereas an increase in DCX was observed after electroconvulsive therapy [140].

Most of the aforementioned studies suggest that MD targets AHN, although none of them depict all the individual stages of this 
neurogenic process. Moreover, antidepressant treatment seems to promote AHN. However, it remains to be determined whether such 
enhancement is required for the effects of such drugs in human beings.

AHN and schizophrenia

Schizophrenia (SCH) is a disabling neuropsychiatric disease with a complex neurobiological background. Patients present positive 
symptoms (e.g., hallucinations, delusions, or disorganization), negative symptoms (e.g., blunted affect, alogia, asociality, or anhe
donia), and cognitive alterations, including hippocampal-dependent memory impairments [67,91].

SCH is associated with a bilateral reduction of hippocampal volume [98,130]. AHN dysfunction has been proposed as an underlying 
mechanism contributing to hippocampal atrophy. However, human post-mortem studies evaluating alterations of AHN in SCH are 
limited, and conclusive evidence supporting this hypothesis remains elusive. Quantification of Ki67+ cells revealed decreased numbers 
of dividing cells in the DG [2,106], suggesting lower rates of proliferation in the hippocampus of SCH patients. The density of cells 
expressing the immature neuron marker PSA-NCAM was found to be reduced in the hilar region but not in other hippocampal subfields 
[9]. Despite densities of CR+ cells remaining unchanged in the DG of SCH patients [145], increased protein expression was reported in 
a later study [134], suggesting that newborn neurons retain an upregulated expression of CR, thereby impeding full maturation. In line 
with this notion, mature neuronal marker CB mRNA was found to be decreased in the mid-DG [3]. Nonetheless, no changes in total cell 
number [50,66] or in CB protein expression [134] were detected in the post-mortem brains of SCH patients.

Although the aforementioned alterations point to dysregulated AHN in SCH, it remains unclear whether neurogenesis deficits affect 
a particular stage, as the specific targeting of individual AHN stages has not been elucidated to date. For instance, it has still to be 
determined whether changes in proliferation arise from an altered NSC population in SCH.

AHN and bipolar disorder

Bipolar disorder (BD) is a complex mental health condition characterized by unusual shifts in mood that last from days to several 
weeks, with euthymia—a normal, tranquil mental state—in between. It includes depressive periods, during which patients experience 
sadness or hopelessness, and manic/hypomanic periods characterized by abnormally elevated energy and irritability [110].

Studies examining hippocampal volume have been somewhat contradictory, with findings of similar [5,26], smaller [12,17], or 
larger [15,131] volumes in patients with BD. Nevertheless, meta-analysis studies showed that patients with BD exposed to lithium, a 
mood stabilizer used in the treatment of this condition, have larger hippocampal volumes, whereas those who had not been exposed to 
lithium have smaller ones compared to controls [61]. Despite the lack of solid evidence, such alterations have been suggested to reflect 
changes in AHN. Only a few human post-mortem studies have examined this relationship. Cell proliferation appears to be unaffected in 
BD, as revealed by the unchanged number of Ki67 + cells [106]. Similar to findings in SCH, elevated levels of CR expression were 
detected in the DG of BD patients compared to controls [134], although no alterations in the number of CR+ cells were found in any 
hippocampal subregion [145]. Notably, no changes in the mature neuron marker CB were detected [134].

Some research has also linked the effects of lithium treatment to enhanced AHN. Although the mechanism of action of lithium is not 
yet clear, imaging studies showed that it accumulates in the hippocampus [118], and in vitro studies indicate that high-dose treatment 
leads to an increased number of neuroblasts, neurons, and glia [100]. Furthermore, in a study addressing the cellular phenotypes of 
neurons derived from induced pluripotent stem cells of BD patients, hyperexcitability of young neurons was observed, which was 
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selectively reversed only in patients who responded to lithium treatment [95].
Given the limited evidence available, it is challenging to draw conclusions about the relationship between AHN and BD. Studies 

investigating the full trajectories of AHN are needed to fully understand the effect of BD on AHN.

AHN and addiction

Available literature has proposed that the hippocampus is involved in drug-seeking and relapse [13,133]. Moreover, animal studies 
show that alcohol consumption and the administration of drugs of abuse result in altered AHN [54,65,122,142]. However, similar 
studies on the human brain are limited. Structural imaging research showed reduced hippocampal volume in alcoholics [120]. 
Additionally, stereological studies reported a reduction in the number of DGCs [14,43] and decreased numbers of Ki67+, Sox2+, and 
DCX+ cells in the SGZ [79]. These findings suggest that neuron loss in alcohol abusers might be due to fewer cells being added to the 
DG, rather than from increased cell death. In heroin addicts, an increased expression of PSA-NCAM in the hilar region of the hip
pocampus, as well as astrocytosis and microgliosis, was observed [136,137]. Another study showed reduced numbers of Musashi-1+

cells that co-expressed Nestin and GFAP but not NeuN or β-III-tub [11], thereby suggesting reduced numbers of precursor cells in 
heroin addicts. These findings point to alterations in the first stages of AHN in chronic drug abuse.

Therefore, while available evidence suggests impaired AHN in neuropsychiatric conditions, major gaps remain in understanding 
the exact nature and functional significance of such alterations in humans. Given the role played by the hippocampus in cognition, 
learning, and memory, failure of AHN would presumably impair these functions. Further research is needed to shed light on the 
relationship between AHN and mental illnesses, to identify the specific stages of AHN that are affected and to determine whether 
reduced AHN is a primary mechanism underlying hippocampal alterations or a secondary consequence of these disorders. Moreover, 
growing evidence suggests that, while psychiatric disorders may begin earlier in life, aging amplifies AHN deficits and worsens clinical 
outcomes, reinforcing the importance of contextualizing adult neurogenesis alterations within an aging framework.

Technical limitations

Progress in the human AHN field has been limited by the quality of available post-mortem brain samples. In this regard, technical 
aspects, such as the methodology used to preserve and process these samples, have a crucial effect on the experimental outcomes and 
the conclusions drawn from experimental observations (reviewed in [126]. Both ante- and post-mortem factors impact the suitability 
of a given human brain tissue for AHN research. For instance, prolonged hypoxic agonal states are related to a lowering of brain pH, a 
variable that is related to tissue, protein, and nucleic acid integrity. Moreover, prolonged post-mortem delay intervals may additionally 
contribute to protein degradation. And, even more importantly, the type of fixative used and a prolonged fixation time may lead to the 
lack of observation of AHN markers in human brain tissue, thereby leading to the erroneous conclusion that AHN is absent or inex
istent. Therefore, one of the main limitations of human AHN studies is the lack of homogeneity in the quality and characteristics of 
human brain sample processing at distinct brain banks worldwide. In this regard, our group has dedicated a considerable efforts in 
recent years to provide the scientific community with a straightforward and reproducible experimental protocol suitable for the study 
of human AHN by IHC (reviewed in [51]. Moreover, other authors have performed much-needed systematic comparison analyses 
between the results obtained upon distinct experimental or analytic conditions in sc-RNAseq studies. Unsurprisingly, they found that 
slight variations in sample processing or the criteria applied during data analysis can substantially alter the conclusions of a given 
study [129]. Therefore, special attention should be devoted to conducting high-quality studies using systematic and reproducible 
methodologies to support the steady and rigorous advancement of the field.

Future directions

Once key technical aspects of human AHN studies have been clarified, the field will face a series of exciting challenges and novel 
questions that warrant further research. For instance, the timeframe required for a newborn neuron to fully develop in the human 
hippocampus (i.e., the duration of the differentiation stage of human AHN) remains to be elucidated. To address whether maturation 
time is lengthened, as occurs in other primate species, novel methodologies capable of providing higher temporal resolution are 
needed. Alternatively, methodologies with the potential to detect AHN in vivo [90] hold significant promise for unraveling the roles 
played by new neurons in the human brain. Last but not least, uncovering the causes and molecular triggers for AHN failure and/or the 
disruption of neurogenic niche homeostasis in distinct diseases will undoubtedly provide novel insights and pave the way toward new 
therapeutic avenues for as-yet incurable conditions such as AD.
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